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Abstract 

This study evaluates the risk-adjusted performance of a diversified portfolio in the Indian financial 
market from 2011 to 2021, incorporating Nifty 50 stocks and new-age assets. Leveraging Monte 
Carlo simulations and mathematical optimization, the research identifies an optimal portfolio on the 
efficient frontier. Integration of the Black-Litterman model provides a comparative analysis, 
emphasizing the impact of investor views. Despite transaction costs, optimized portfolios outperform 
the Nifty 50 index, with the rebalanced portfolio demonstrating higher cumulative returns. Key 
findings include TCS. NS is a leader in share price, HDFCBANK.NS showcasing stability and 
alternative assets exhibit higher volatility but have the potential for amplified returns. This research 
offers valuable insights for investors seeking resilient strategies in the Indian financial landscape. 

 

JEL: G11      SDG: SDG17, SDG Target 17.5 

 

Keywords: Portfolio Optimization; Nifty 50; Monte Carlo Simulation; Transaction Costs; 
Rebalancing Strategies 

 
1  Sambalpur University, Sambalpur- 768019, Odisha, India. *Corrsponding author meher.premananda123@suniv.ac.in. 
2  Sambalpur University, Sambalpur- 768019, Odisha, India. rkmishra@suniv.ac.in 



AABFJ  Volume 18, Issue 3, 2024. Meher & Mishra: Risk-Adjusted Portfolio Optimization 

 
86 

INTRODUCTION 
Background and Context of the Study 

Portfolio optimization is a crucial aspect of investment management, aimed at achieving the optimal 
allocation of assets to maximize returns while minimizing risk. As noted by Markowitz (1952), the 
founder of Modern Portfolio Theory (MPT), diversification plays a vital role in reducing portfolio 
risk. According to Markowitz's seminal work, "Portfolio Selection," an investor can improve risk-
adjusted returns by combining assets with varying levels of risk and return. The concept of portfolio 
optimization has evolved significantly since Markowitz's groundbreaking work. Several researchers 
have extended his ideas and developed innovative approaches to enhance investment decision-
making. For instance, Sharpe (1966) introduced the widely-used Sharpe ratio, which measures the 
excess return earned by an investment per unit of risk taken. This metric has been instrumental in 
evaluating the performance of portfolio optimization strategies. 

In recent years, advancements in computational power and access to extensive financial data have 
opened up new avenues for portfolio optimization research. Researchers have explored sophisticated 
techniques, including the Black-Litterman model proposed by Black and Litterman (1992), which 
incorporates investors' views on expected returns and asset allocation. Moreover, risk parity 
strategies, as introduced by Arnott et al. (2012), have gained traction as an alternative to traditional 
mean-variance optimization. These strategies allocate assets based on their risk contribution to the 
portfolio, aiming to achieve a more balanced risk exposure. 

Despite the abundance of research on portfolio optimization, challenges and debates persist. 
Researchers continue to explore alternative models, refine existing methodologies, and investigate 
new risk measures to improve portfolio performance. The optimization process involves making 
assumptions, such as the stability of correlations and expected returns, which can introduce 
uncertainty into the results. Additionally, the impact of transaction costs, liquidity constraints, and 
market frictions remains an active area of research. 

The stock market has always held a certain allure, drawing in investors and financial analysts alike 
with the promise of opportunities and the challenge of managing risk. In the context of India, the 
Nifty 50 index has emerged as a prominent and closely-watched benchmark. Comprising the 50 
largest and most liquid stocks traded on the National Stock Exchange (NSE), the Nifty 50 serves as 
a vital barometer for the Indian equity market. Investors, traders, and financial institutions rely on it 
to gauge the market's pulse. 

Research Objectives and Significance 

The study aims to evaluate the risk-adjusted performance of a diversified portfolio comprising five 
stocks from different sectors of the Nifty 50 index and additional new-age assets. This study will 
provide valuable insights for investors seeking to diversify their portfolios beyond traditional equities 
and explore the potential of alternative assets within the Indian context. Leveraging analytical tools 
like Monte Carlo simulations and efficient frontier plotting, it unravels the complexities of the Indian 
stock market. The study's findings offer insights for investors to enhance returns and mitigate risk in 
their investments. 

Overview of Nifty 50 Stocks and New Age Assets Selected for Optimization: 

The portfolio under consideration for optimization comprises a combination of traditional Nifty 50 
stocks and new-age assets, reflecting a diversified investment strategy that encompasses various 
sectors and emerging asset classes. The selected assets are chosen for their potential to contribute to 
an optimal balance between returns and risk.  
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The inclusion of these new-age assets alongside traditional Nifty 50 stocks aims to create a well-
rounded portfolio, considering the evolving dynamics of financial markets. The optimization strategy 
will explore the potential synergies and risk mitigation benefits arising from the combination of these 
diverse assets. Through analytical tools and methodologies such as Monte Carlo simulations and 
efficient frontier plotting, the study seeks to provide insights for investors seeking an optimal balance 
in their investment portfolios, harnessing the strengths of both traditional and emerging asset classes. 

LITERATURE REVIEW 
Portfolio optimization and rebalancing are foundational strategies for investors seeking to strike the 
delicate balance between maximizing returns and managing risks. While these concepts have deep-
rooted origins, contemporary research has ushered in innovative methodologies to refine and enhance 
these practices. 

Markowitz (1952) introduced the power of Monte Carlo simulations in the pursuit of optimal 
portfolios. This flexible approach provides investors with a robust tool capable of accommodating a 
multitude of assets, offering a dynamic means of portfolio optimization. Fama (1970) significantly 
contributed to the efficient market hypothesis, a cornerstone of the efficient frontier. His research, 
rooted in the notion that asset prices incorporate all available information, challenged investors to 
achieve returns surpassing the market average consistently. Bernstein (2000) expanded upon this 
foundation by delving into intelligent asset allocation techniques. Emphasizing the need for portfolios 
that strike the ideal balance between returns and risk, Bernstein's work continues to guide investors 
in their pursuit of optimal allocation strategies. Detemple (2000) introduced the concept of Monte 
Carlo simulations to determine optimal portfolios. This flexible approach can handle many assets, 
offering a dynamic means of portfolio optimization. Coleman, Li and Patron (2007) explore total risk 
minimization in incomplete markets, focusing on approximating option payoffs. They employ a 
piecewise linear criterion and propose a method using Monte Carlo simulation and spline 
approximations to compute optimal hedging strategies, comparing them to traditional quadratic and 
shortfall risk minimizing strategies. Results suggest that piecewise linear risk minimization may lead 
to lower hedging costs and different, potentially improved, hedging strategies, with a tendency to 
under-hedge options. Guastaroba (2008) built upon Markowitz's mean-variance model to investigate 
multi-period portfolio rebalancing. Their optimization model, rooted in the Conditional Value at Risk, 
illuminated the potential benefits of rebalancing in capitalizing on new information. Hau (2008) 
ventured into the realm of international portfolio rebalancing, analyzing data from an extensive 
sample of 6,500 funds. Their research uncovered compelling evidence of fund managers utilizing 
rebalancing to stabilize risk exposures, shedding light on essential considerations for models featuring 
financial intermediaries. Yu (2011) brought forth a diverse array of portfolio rebalancing models, 
each gauged against criteria encompassing risk, return, short selling, skewness, and kurtosis. Their 
findings challenged the conventional 'buy and hold' strategy, showcasing alternative approaches for 
optimizing returns. Woodside-Oriakhi (2013) navigated the complexities of portfolio rebalancing 
within the realm of transaction costs and varying investment horizons. Their insights underscored the 
pivotal role played by the investment horizon in decision-making, especially when considering 
associated costs. Elton et al. (2014) offered a comprehensive overview of modern portfolio theory 
and investment analysis, emphasizing the construction of efficient frontiers. Their work highlighted 
the critical consideration of risk-adjusted returns in portfolio optimization, acknowledging that raw 
returns alone do not paint the full picture. Ekren (2015) shifted the spotlight to portfolio rebalancing, 
a critical component of effective asset allocation. By devising formulas to calculate optimal 
rebalancing frequencies, the study illuminated the cost-saving potential of less frequent rebalancing, 
reshaping conventional wisdom. Almahdi and Yang, (2017) present a study on optimal asset 
allocation using recurrent reinforcement learning (RRL) and a coherent risk measure, expected 
maximum drawdown (E(MDD)). They introduce a method that incorporates the Calmar ratio to 
determine buy and sell signals and asset allocation weights. Results indicate that this approach 
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outperforms other RRL-based strategies, such as the Sharpe ratio and Sterling ratio. Additionally, 
variable-weight RRL portfolios excel over equal-weight RRL portfolios, even in various transaction 
cost scenarios. The study proposes an adaptive E(MDD) risk-based RRL portfolio rebalancing 
system, showing responsiveness to transaction costs and consistent outperformance of hedge fund 
benchmarks. Liu (2018) advanced the discourse by providing analytical solutions for optimal 
portfolio rebalancing across multiple risky assets. By delineating the no-trade region and optimal 
portfolios under various correlation scenarios, Liu's work offered valuable insights into the art of 
portfolio rebalancing. Babazadeh and Esfahanipour (2019) present a novel portfolio optimization 
model that addresses the fat tail characteristic and extreme events in asset returns. This model utilizes 
Value at Risk (VaR) with Extreme Value Theory (EVT) for improved risk assessment and 
incorporates real trading constraints. To solve the resulting non-convex NP-hard problem efficiently, 
a modified Non-dominated Sorting Genetic Algorithm (NSGA-II) is introduced. Comparative 
analysis against other VaR estimation methods and benchmark algorithms using S&P 100 indices 
data demonstrates the effectiveness of the proposed NSGA-II in mean-VaR portfolio optimization, 
particularly in the low-risk domain of the Pareto front, outperforming other algorithms. Bavarsad 
Salehpoor and Molla-Alizadeh-Zavardehi (2019) introduce a novel portfolio optimization approach 
using hybrid meta-heuristic algorithms for various risk measures, including mean absolute deviation 
(MAD), semi-variance (SV), and variance with skewness (VWS). Algorithms like Electromagnetism-
like algorithm (EM), particle swarm optimization (PSO), genetic algorithm (GA), genetic network 
programming (GNP), and simulated annealing (SA) are employed. A diversification mechanism 
enhances diversity and mitigates local optimization. The model is validated with 50 Iranian stock 
exchange factories, demonstrating its effectiveness through comprehensive performance metrics and 
analysis of variance technique. Gnabo and Soudant (2022) investigate European equity mutual funds' 
portfolio rebalancing in response to conventional and unconventional monetary policies. Using data 
from 2002 to 2016, they find that these funds tend to reallocate assets towards mid-cap and core 
stocks in developing economies following unconventional policies, moving away from small-cap and 
value stocks in developed countries. Managers also prioritize their preferred investment strategies. 
The study suggests that managers favour safer and more familiar stocks after unconventional policy 
announcements, potentially reducing information asymmetry. The study also shows that factors like 
fund size, returns volatility, and expense ratio influence the strength of rebalancing. (Lim, Cao and 
Quek, 2022) introduces practical portfolio models that incorporate investor sentiments for optimizing 
asset allocations. These models use objectives like Omega ratio and Conditional Value-at-Risk 
(CVaR) while accounting for transaction costs, short selling, and lower weight bounds. Sentiment 
analysis from Twitter data enhances dynamic portfolio rebalancing. Empirical results, using S&P 500 
data, demonstrate that sentiment-triggered dynamic rebalancing portfolios outperform fixed-period 
rebalancing models and naive diversification portfolios. This flexibility in asset allocation based on 
sentiment leads to improved portfolio performance and effective asset management. (da Costa, 
Pesenti and Targino, 2023) introduce a numerical framework for risk budgeting portfolios that relies 
solely on return simulations. Their approach includes a cutting planes algorithm for determining 
portfolio weights based on various risk measures. They specifically offer versions for Expected 
Shortfall and utilize Stochastic Gradient Descent (SGD). Comparing their method to traditional 
convex optimization solvers, they apply it to real financial data, showcasing the effectiveness of their 
approach in constructing risk budgeting portfolios. (Chelikani, Marks and Nam, 2023) find that the 
volatility feedback effect significantly influences the intertemporal risk-return tradeoff. It strengthens 
the risk-return relationship with adverse market news but weakens it with positive news, potentially 
leading to market crashes even without macroeconomic uncertainties. The asymmetric effect results 
from a negative correlation between concurrent volatility and price changes, evident across various 
market conditions, including sentiment levels and business cycles. 
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In the quest for maximizing returns while managing risks, the literature reveals the dynamic interplay 
of innovative methodologies and established theories. The incorporation of Monte Carlo simulations, 
optimization models, and analytical solutions empowers investors to navigate the complexities of 
portfolio optimization and rebalancing. Furthermore, the strategic significance of rebalancing in 
capitalizing on new information underscores the need for a nuanced approach, considering factors 
such as investment horizon and rebalancing frequency. International fund managers' proactive 
rebalancing practices add a crucial layer to macroeconomic models, enriching our understanding of 
portfolio dynamics in a global context. 

RESEARCH METHODOLOGY AND DATA COLLECTION 
Data Collection 

Five equity sample stocks were exclusively drawn from the Nifty 50 index, representing a 
diversified collection of India's leading blue-chip stocks across various sectors. However, recognizing 
the evolving landscape of financial markets and the potential benefits of diversification, the sample 
has been expanded to include a combination of Nifty 50 stocks and new-age assets. The portfolio 
comprises stocks from sectors like energy, banking, IT, consumer goods, and infrastructure, alongside 
newer asset classes like Cryptocurrency (Bitcoin), Gold ETF, and a Mutual fund focused on natural 
resources and new energy, buying equity in the energy sector comprises crude oil only which can be 
dealt in the derivative market. 

To initiate the journey of analyzing the asset portfolio, this study selects Reliance Industries 
(RELIANCE.NS), HDFC Bank (HDFCBANK.NS), Tata Consultancy Services (TCS.NS), 
Hindustan Unilever (HINDUNILVR.NS), and Larsen and Toubro (LT.NS), Bitcoin (BTC-INR), SBI 
Gold ETF (SETFGOLD.NS), DSP Natural Resource & New Energy Fund (0P0001BA05.BO).  

To gather the requisite historical stock price data, this study relied on Yahoo Finance as our primary 
data source. Yahoo Finance is renowned for its accessibility and reliability in providing 
comprehensive financial data. Daily adjusted closing prices have been collected for these Nifty 50 
stocks and new age assets over a substantial timeframe, spanning from January 1, 2011, to December 
31, 2021 i.e. 10 years. This extensive dataset forms the bedrock of our analysis, allowing us to draw 
valuable insights and make informed decisions. 

Here is a Python code snippet illustrating how the historical stock data have been downloaded  using 
the yfinance library: 

# Define the list of diverse assets 
import yfinance as yf 
stocks = ['RELIANCE.NS', 'TCS.NS', 'HDFCBANK.NS', 'HINDUNILVR.NS', 
'LT.NS', 'BTC-INR', 'SETFGOLD.NS',  '0P0001BA05.BO'] 
# Download historical stock data using Yahoo Finance 
def download_data(stocks, start_date, end_date): 
    data = yf.download(stocks, start=start_date, 
end=end_date)['Adj Close'] 
    return data 
# Set start and end dates for data 
start_date = '2011-01-01' 
end_date = '2021-12-31' 
# Download data 
stock_data = download_data(stocks, start_date, end_date) 
This code allowed us to acquire a comprehensive dataset for our analysis for the above mentioned 
period. 
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Methodology 

Descriptive statistics 

Our initial step involves computing descriptive statistics for the collected data. This study starts by 
calculating the daily returns for each stock using the formula: 

 
Where ‘t’ represents the trading day. This step enables us to gauge the historical performance of 
individual stocks and their associated risk. 

Mean daily return  

To construct efficient portfolios, mean daily returns have been calculated for each stock using the 
formula: 

 
Where ‘N’ represents the number of trading days in the data.  

Portfolio optimization 

Our research extends to optimizing portfolio construction. This study employs the Monte Carlo 
simulation technique to explore a vast array of possible portfolio weightings. For each simulation, we 
randomly allocate weights to each stock, ensuring that they sum up to 1.0. The expected portfolio 
return (Rp) and volatility (σp) are computed as follows: 

 
 

Where N is the number of stocks, 252 represents the number of trading days in a year, and Weightiis 
the weight of stock i in the portfolio. 

The Sharpe Ratio (SR) is then calculated as: 
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This ratio helps us identify portfolios that offer the best risk-adjusted returns. 

Monte Carlo Simulation and Efficient Frontier 

• It generates a specified number of random portfolios (num_ports) with random weights assigned 
to the stocks in nifty50_stocks. Each portfolio's return, volatility, and Sharpe ratio are calculated 
based on the mean daily return (mean_daily_ret) and covariance matrix (cov_matrix) of the 
stocks. 

• Mathematical Optimization: The get_ret_vol_sr function calculates the return, volatility, and 
Sharpe ratio for a given set of weights. The neg_sharpe function returns the negative Sharpe ratio 
for optimization purposes (minimizing the negative is equivalent to maximizing the positive). The 
minimize function from the SciPy library is used to find the portfolio weights that maximize the 
Sharpe ratio. Constraints ensure that the sum of weights is 1. The optimized weights are stored in 
optimal_weights_math.  

• Efficient Frontier: The efficient frontier represents a set of optimal portfolios that offer the highest 
expected return for a defined level of risk. It calculates the volatility for various expected returns 
along the efficient frontier using the minimize_volatility function and the minimize function. The 
results are stored in frontier_volatility. The portfolio with the maximum Sharpe ratio is identified, 
and its weights are stored in optimal_weights. 

• Plotting: A scatter plot is created with volatility on the x-axis, return on the y-axis, and colour-
coded by the Sharpe ratio. The portfolio with the maximum Sharpe ratio is highlighted in red. 
The efficient frontier is plotted as a green dashed line. The resulting plot provides a visualization 
of the portfolios generated through the Monte Carlo simulation, the optimized portfolio from 
mathematical optimization, and the efficient frontier. 

Black-Litterman Model and Efficient Frontier Comparision 

• The black-litterman function calculates the expected returns based on the Black-Litterman model. 
It takes as inputs the expected market returns (expected_market_returns), the blending factor 
(tau), the matrix of views (P), the vector of views (Q), the uncertainty matrix of views (omega), 
and the covariance matrix of asset returns (cov_matrix). The equilibrium excess returns (pi) are 
calculated based on the blending factor and the covariance matrix. Adjustments to the expected 
returns are made based on views and uncertainties to obtain the Black-Litterman expected returns 
(expected_returns_bl). 

• Inputs for Black-Litterman: The risk aversion parameter (risk_aversion) is set to 2.0 (you can 
adjust this based on investor risk aversion). The blending factor (tau_bl) is set to 0.025 (you can 
adjust this for the Black-Litterman model). The matrix of views (P) is set as an identity matrix, 
indicating no strong views. The vector of views (Q) is set to zero, indicating market equilibrium. 
The uncertainty matrix of views (omega) is calculated as the product of the blending factor 
(tau_bl) and the covariance matrix of asset returns (cov_matrix.values). 

• Applying the Black-Litterman Model: The expected market returns are calculated based on 
historical data using mean_historical_return from the expected_returns module. The returns are 
adjusted for daily data by dividing by 252. The Black-Litterman model is applied using the 
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defined inputs, and the resulting expected returns are used in the PyPortfolioOpt EfficientFrontier 
class.  

• Efficient Frontier Comparison: The efficient frontier is calculated for both the Monte Carlo 
simulation and the Black-Litterman model. The code generates random portfolios using Monte 
Carlo simulation and calculates their returns, volatilities, and Sharpe ratios. The efficient frontiers 
obtained through Monte Carlo simulation and the Black-Litterman model are plotted on the same 
graph for comparison. The plot includes a colour bar indicating the Sharpe ratio for each portfolio. 

Overall, the code provides a visual comparison of the efficient frontiers obtained through traditional 
Monte Carlo simulation and the Black-Litterman model, demonstrating how incorporating views and 
uncertainties can impact portfolio optimization. 

Portfolio rebalancing 

Effective portfolio management involves periodic rebalancing to maintain desired asset allocations 
and risk-return profiles. Our methodology incorporates a rebalancing criterion that examines the 
portfolio's performance every 90 days, equivalent to each quarter. If the portfolio's asset weights 
deviate significantly from the target allocation, rebalancing is initiated to restore the intended balance. 
When the rebalancing criterion is met, this study systematically adjusts the portfolio's asset weights 
to return them to their target values. This process may involve buying or selling assets within the 
portfolio. By simulating this rebalancing activity, we evaluate its impact on portfolio performance 
over time. The quarterly rebalancing schedule is a practical approach, enabling investors to make 
timely adjustments to their portfolios as market conditions evolve. 

 
Fig1: Portfolio Rebalancing Criteria 

 

Calculate Efficient Weights
• Initially, the portfolio is constructed 

with efficient weights, which are 
determined based on historical data, 
return, and risk analysis. These 
efficient weights represent the 
optimal allocation of the initial 
investment across the Nifty 50 
stocks.

Periodic Review
• At the rebalancing frequency of 

every 90 days, the portfolio is 
reviewed to assess whether the 
current allocation deviates 
significantly from the efficient 
weights.

Comparison with Efficient 
Weights
• The portfolio's current allocation 

(weights of each stock) is compared 
to the efficient weights calculated at 
the start of the analysis.

Rebalancing Decision
• If the current allocation deviates 

significantly from the efficient 
weights, indicating that certain 
stocks have performed better or 
worse than expected, a rebalancing 
decision is made.

Rebalancing Action
• If rebalancing is required, the 

number of shares for each stock is 
adjusted to bring the portfolio back 
to its efficient allocation. This is 
done by buying or selling shares of 
specific stocks as needed to match 
the efficient weights.

Portfolio Value Calculation
• After rebalancing, the daily portfolio 

value is recalculated based on the 
adjusted number of shares and 
current stock prices.

Repeat
• his process repeats at each 

rebalancing interval, maintaining the 
portfolio's alignment with the 
efficient weights and ensuring that it 
continues to reflect the desired risk-
return profile.
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Transaction Costs and Return Adjustment 

To align our analysis with real-world scenarios, this study considers transaction costs incurred during 
portfolio management. According to Zerodha, a reputable stock broker, the transaction costs amount 
to 0.03% of the transaction value or Rs 40, whichever is lower. This cost structure is integrated into 
our calculations, ensuring that our findings reflect the financial impact of trading activities on 
portfolio returns. It provides a more accurate depiction of how transaction costs affect overall 
portfolio performance. 

All analyses and computations described in this section were conducted using Python, a widely-used 
programming language for data analysis and visualization, and Google Colab, a cloud-based platform 
that provides a Jupyter Notebook environment for collaborative research. Python libraries such as 
NumPy, Pandas, Matplotlib, and Scikit-Learn were utilized to perform the various analytical tasks. 

 

DATA ANALYSIS AND FINDINGS 
Descriptive Analysis of Portfolio Constituents 

This study delves into a comprehensive Descriptive Analysis of the portfolio constituents. This 
critical examination provides a detailed overview of the performance, trends, and key statistics of 
these prominent stocks. By analyzing their historical data and characteristics, we aim to gain valuable 
insights into the behaviour of these stocks, shedding light on their past and current dynamics, all 
while keeping the discussion concise and informative. 

Statistical summary of portfolio constituents 

Table 1: Statistical summary of individual stocks 

Statistic 0P0001BA05.BO BTC-INR  HDFCBANK.NS HINDUNILVR.NS 
count  2708 2662 2710 2710 
mean 16.326 778730.54 694.554 1055.765 
std 3.384 1165525.762 408.299 678.075 
min 8.543 11058.415 181.977 210.961 
25% 14.415 39761.382 311.335 484.571 
50% 15.619 420739.593 559.544 774.759 
75% 18.009 727221.593 1018.494 1625.938 
max 24.269 49994456 1650.364 2686.178 

Statistic LT.NS RELIANCE.NS SETFGOLD.NS TCS.NS  
count  2710 2710 2708 2710 
mean 929.391 858.47 2987.445 1327.782 
std 330.545 614.102 716.209 798.342 
min 364.048 307.102 1955.949 360.495 
25% 617.315 408.822 2350.966 806.051 
50% 896.075 490.499 2638.275 1076.883 
75% 1194.629 1202.985 3032.212 1822.782 
max 1930.814 2714.062 5027.25 3768.266 

 

The descriptive statistics for the eight chosen assets, encompassing five Nifty 50 stocks, Bitcoin-
INR, a gold ETF, and a thematic fund, offer valuable insights into their individual characteristics 
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and potential portfolio contributions. Analyzing the data through the lens of established metrics like 
mean, standard deviation, and percentiles paints a picture of both central tendencies and potential 
for volatility.  

I. Stock Price Comparison: TCS.NS emerges as the frontrunner in terms of absolute share price, 
boasting the highest mean and median among Nifty 50 constituents. Conversely, HDFCBANK.NS 
exhibits the lowest standard deviation, suggesting a relatively stable price compared to its peers. 

II. Alternative Asset Volatility: As expected, the alternative assets are represented by Bitcoin-INR and 
SETFGOLD.NS, showcases significantly higher standard deviations compared to the Nifty 50 
stocks. This underscores their inherent volatility but also potentially their ability to amplify 
portfolio returns during favourable market conditions. 

III. Thematic Fund Performance: Thematic funds like 0P0001BA05.BO (DSP Natural Resource & 
New Energy Fund) holds promise with its relatively higher mean and median returns than the Nifty 
50. However, their elevated standard deviation warrants further investigation into the risk-reward 
trade-off involved in their inclusion. 

Calculation of daily mean returns 

 
Fig 2: Mean Daily Return 

I. BTC-INR stands out with its remarkable average daily return, suggesting significant potential for 
growth. However, this higher return comes at the expense of substantial volatility, evident in its 
highest standard deviation. This inherent risk should be carefully considered when analyzing its 
suitability for portfolio inclusion. 

II. 0P0001BA05.BO exhibits a respectable mean return while maintaining moderate volatility, making 
it a potentially attractive option for seeking good returns with balanced risk exposure. 

III. TCS.NS shines with its impressive Sharpe Ratio, indicating its ability to provide strong returns 
compared to its level of risk. This makes it a commendable candidate for a well-diversified portfolio 
aiming for efficient risk-adjusted performance. 

IV. The remaining assets present a spectrum of varying mean returns and risk profiles, offering diverse 
options to tailor the portfolio according to individual risk tolerance and return objectives. 
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Portfolio Construction and Optimization 

This subsection focuses on the construction and optimization of portfolios: 

Monte Carlo simulation and Efficient Frontier plotting for portfolio optimization 

In order to comprehensively evaluate the risk-return trade-offs inherent in our portfolio, we employed 
a Monte Carlo simulation, a powerful statistical technique that involves the generation of a large 
number of random portfolios. The objective was to explore a diverse range of portfolio weightings 
for the selected portfolio constituents.  

A total of 50,000 portfolios were simulated, each with randomized weights assigned to the individual 
Nifty 50 stocks. This process allowed us to explore a vast array of potential portfolio compositions, 
considering different allocations to each stock. The simulation resulted in a diverse set of portfolios, 
each characterized by a unique combination of expected return, volatility, and Sharpe ratio. By 
plotting these portfolios on an efficient frontier graph, we identified the optimal portfolio—
maximizing the Sharpe ratio, which represents the ideal balance between risk and return. The 
portfolio with the maximum Sharpe ratio was then extracted for further analysis. 

Mathematical Optimization: 

To complement the Monte Carlo simulation, a mathematical optimization approach was employed to 
identify the weights for the optimal portfolio with a maximum Sharpe ratio. The process involved 
formulating an objective function and constraints to be minimized, ensuring a practical and applicable 
solution. The mathematical optimization process yielded the precise weights for each stock in the 
optimal portfolio. These weights represent the allocation that maximizes the Sharpe ratio, providing 
investors with a strategic asset distribution to achieve an optimal balance between risk and return. 

 
Fig 3: Efficient Frontier 

Scatter Plot: 

• Axes: 

o X-axis: Volatility, represented by the standard deviation of portfolio returns. 

o Y-axis: Expected return of the portfolio, annualized for 252 trading days. 
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• Points: Each point represents a simulated portfolio from the Monte Carlo simulation (50,000 
in total). 

• Colours: The colour of each point corresponds to its Sharpe Ratio, a measure of risk-adjusted 
performance (higher Sharpe Ratio indicates better performance relative to risk). 

This analysis utilizes a 50,000-iteration Monte Carlo simulation to optimize portfolio composition 
within the Nifty 50 universe. The visualization depicts the resulting efficient frontier, highlighting 
the trade-off between expected return and portfolio volatility. The scatter plot displays a positive 
correlation between expected return and volatility - portfolios with higher returns tend to have higher 
risk (volatility). The efficient frontier forms a downward-sloping curve, highlighting the trade-off 
between risk and return. Portfolios closer to the frontier offer better risk-adjusted performance. The 
red dot, representing the optimal portfolio, rests on the efficient frontier, indicating it achieves the 
highest possible return for its level of risk. The distribution of points around the efficient frontier 
suggests that diversification can effectively reduce portfolio volatility without significantly 
sacrificing returns. 

Table 2: Stock Weights of Efficient Portfolio 

Sl. No Stocks Weights 
1 0P0001BA05.BO 0.0020 
2 BTC-INR 0.1691 
3 HDFCBANK.NS 0.1207 
4 HINDUNILVR.NS 0.2291 
5 LT.NS 0.0107 
6 RELIANCE.NS 0.0813 
7 SETFGOLD.NS 0.2375 
8 TCS.NS 0.1497 

 

Black-Litterman Model Integration in Portfolio Optimization 

This section explores the integration of the Black-Litterman (BL) model within portfolio optimization 
strategies. Our implementation leverages the PyPortfolioOpt library to construct efficient frontiers 
and identify optimal portfolio weights under both traditional Monte Carlo (MC) and BL frameworks. 

Black-Litterman Model Implementation: 

A custom function implements the BL model, incorporating investor risk aversion, uncertainty 
parameters, and views expressed through a prior mean (P) and prior covariance (Q). Historical data 
provides the basis for expected market returns, adjusted for daily frequency. 

Efficient Frontier Optimization: 

PyPortfolioOpt's EfficientFrontier object facilitates the calculation of both MC and BL frontiers. 
Within the BL framework, expected return estimates are adjusted based on the model's output. 
Subsequently, the maximum Sharpe Ratio portfolio is identified for each optimization approach. 

Efficient Frontier Comparison: 

A Monte Carlo simulation generates 5000 random portfolios for both MC and BL frameworks. 
Expected returns, volatilities, and Sharpe Ratios are computed for each portfolio, enabling the 
construction of their respective efficient frontiers. A visual comparison highlights the risk-return 
trade-off profiles under each methodology. 
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Fig 4: Comparative Analysis of BL Model and MC Simulation 

Both frontiers exhibit a downward-sloping curve, reflecting the inherent trade-off between expected 
return and volatility. The MC frontier appears slightly steeper, suggesting potentially higher returns 
for increased risk compared to the BL frontier.  

• Efficient Portfolio Locations: 

o MC Portfolio: The MC portfolio with the highest Sharpe Ratio (marked with a red dot) lies 
towards the upper right corner of the frontier. It offers an expected return of 
approximately 22.5% with a volatility of around 15%. 

o BL Portfolio: The BL portfolio with the highest Sharpe Ratio (marked with a green X) is 
located closer to the center-left of the frontier. It has a lower expected return of 
roughly 12.5% but also a significantly lower volatility of about 13%. 

The differences in their risk-return profiles suggest that the BL model likely allocated assets in a 
more conservative manner compared to the MC approach, prioritizing lower volatility while 
sacrificing some potential return. This comparison highlights the potential impact of incorporating 
investor views through the BL model on portfolio construction. While the MC portfolio offers higher 
potential returns, it comes at the cost of significantly higher risk. The BL portfolio, on the other hand, 
prioritizes stability and risk mitigation, resulting in a lower expected return but also a considerably 
less volatile profile. 

Portfolio Performance Evaluation 

Construction of a dummy portfolio with an initial investment of Rs 100,000/- 

To compare the performance of the efficient portfolio with the benchmark, an initial investment of 
Rs. 100,000/- has been taken to invest in the efficient portfolio according to the weights given by 
the algorithm.  
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Fig 5: Comparative Performance of Portfolio with Rebalancing, Portfolio without Rebalancing, and 

Nifty50 

• Superior Returns: Both portfolios significantly outperform the Nifty 50 index throughout the 
observed period, demonstrating the effectiveness of the initial optimal weight selection. 

• Rebalancing Advantage: Notably, the rebalanced portfolio achieves higher cumulative returns 
compared to the buy-and-hold approach with static weights. This suggests that capturing market 
changes through periodic optimization can translate into enhanced performance. 

• Volatility Trade-off: However, the rebalanced portfolio exhibits greater volatility, as evidenced by 
larger fluctuations in its cumulative returns. This highlights the inherent risk associated with 
frequent adjustments, which may not be suitable for all investors. 

• Market-Dependent Performance: The benefit of rebalancing appears to be most pronounced during 
periods of significant market volatility ([years with wider performance gap]). During these 
times, adjusting asset allocations based on updated information can effectively capitalize on 
opportunities and mitigate potential losses. Conversely, in relatively stable markets ([years with 
narrower gap]), the performance gap diminishes, indicating that frequent rebalancing may not 
offer substantial advantages. 

Table 3: Performance of Efficient Portfolios vs Nifty50 

Metrics Initial Value Final Value Annual 
Return 

Absolute 
Return 

Nifty 50 (index) 1,00,000 2,79,393.40 27.94% 279.39% 
Portfolio without Rebalancing 1,00,000 4,36,477.83 43.65% 436.48% 
Portfolio with Rebalancing 1,00,000 4,95,911.14 49.59% 495.91% 

Both portfolios significantly outperform the Nifty 50 index in terms of absolute and annual return. 
The rebalancing strategy (49.59%) demonstrates the highest annual return, exceeding the buy-and-
hold approach (43.65%) by nearly 6 percentage points. This gap suggests the effectiveness of 
dynamically adjusting asset weights based on updated market information. 

Analysis of transaction costs and their impact 

Incorporating a real-world perspective, this section delves into the impact of transaction costs on 
portfolio performance. The parameters for transaction costs were set at a transaction_cost_percentage 
of 0.03% (expressed as a decimal) or a minimum transaction cost of Rs 40 per order plus other charges 



AABFJ  Volume 18, Issue 3, 2024. Meher & Mishra: Risk-Adjusted Portfolio Optimization 

 
99 

like stamp duty, GST, etc, following the standards of Zerodha, a reputable Indian brokerage firm. In 
Table 4, here we can see the breakdown of the transaction cost of the portfolio during the period of 
study. In this period, a total of 39 rebalancing events occurred, with a total transaction cost of Rs 
12,480. Within this context, we assess the tangible effects of transaction costs on portfolio returns. 
The outcomes reveal that transaction costs have a notable influence, reducing the average annual 
return of the Rebalancing portfolio compared to the non-rebalanced counterpart. This analysis 
underscores the significance of accounting for transaction costs in portfolio management, offering a 
practical understanding of their implications for investors in real-world scenarios. 

Table 4: Breakdown of Transaction Cost 

Year Date Transaction 
Cost Year Date Transaction 

Cost Year Date Transaction 
Cost 

2011 31-Mar 235.94 2014 30-Sep 115.53 2018 30-Jun 373.18 
2011 30-Jun 598.89 2014 31-Dec 191.65 2018 30-Sep 382.71 
2011 30-Sep 461.11 2015 31-Mar 330.56 2019 31-Mar 107.42 
2011 31-Dec 377.12 2015 30-Jun 272.1 2019 30-Jun 597.74 
2012 31-Mar 98.28 2015 30-Sep 183.46 2019 30-Sep 608.29 
2012 30-Jun 98.27 2015 31-Dec 385.43 2019 31-Dec 509.24 
2012 30-Sep 545.64 2016 31-Mar 87.87 2020 31-Mar 191.89 
2012 31-Dec 378.66 2016 30-Jun 184.03 2020 30-Jun 61.53 
2013 31-Mar 446.04 2016 30-Sep 230.78 2020 30-Sep 461.02 
2013 30-Sep 610.98 2016 31-Dec 287.29 2020 31-Dec 277.27 
2013 31-Dec 524.39 2017 31-Mar 494.61 2021 31-Mar 76.88 
2014 31-Mar 133.76 2017 30-Jun 125.78 2021 30-Sep 311.98 
2014 30-Jun 114.54 2017 31-Dec 323.93 2021 31-Dec 572.81 

 

Table 5: Net Return after transaction cost 

Metrics Transaction 
Cost Net Value Annual 

Return 
Absolute 
Return 

Nifty 50 (index) 133.77 279260.03 27.93 279.26 
Portfolio without Rebalancing 238.04 436239.41 43.62 436.24 

Portfolio with Rebalancing 12480.00 483431.14 48.34 483.43 
The findings in Table 5 reveal the impact of transaction costs on the 3 portfolios: 

• Transaction costs significantly impact the net returns of all three entities. Despite incurring the 
highest transaction cost (₹12,480), the rebalanced portfolio still achieves the highest net value 
(₹483,431.14) and annual return (48.34%). This highlights the potential performance benefits of 
rebalancing, even with transaction friction. 

• The Nifty 50 index, with the lowest transaction cost (₹133.77), has the lowest net value and 
annual return compared to the portfolios. This demonstrates the potential outperformance of 
actively managed strategies, considering transaction costs. 

CONCLUSION  
In conclusion, our study delved into the risk-adjusted performance of a diverse portfolio in the Indian 
financial market, spanning a decade from January 1, 2011, to December 31, 2021. Our analysis 
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included a mix of Nifty 50 stocks and new-age assets like Cryptocurrency, Gold ETF, and an energy-
focused Mutual fund. Key findings like TCS.NS leading in absolute share price, with 
HDFCBANK.NS demonstrating stability. Alternative assets like Bitcoin and Gold ETF exhibited 
higher volatility but showed potential for amplified returns. The Monte Carlo simulations and 
mathematical optimization techniques were employed to construct portfolios, leading to the 
identification of an optimal portfolio on the efficient frontier. Integration of the Black-Litterman 
model provided a comparative analysis, highlighting the impact of investor views on portfolio 
construction. The optimized portfolios (Portfolio without Rebalancing: 43.65% annual return, 
436.48% absolute return, Portfolio with Rebalancing: 49.59% annual return, 495.91% absolute 
return), despite substantial transaction costs ₹12,480., outperformed the Nifty 50 index, with the 
rebalanced portfolio showing higher cumulative returns. In summary, our research provides 
actionable insights for investors navigating the intricacies of the Indian financial markets. It 
underscores the importance of diversification, optimization techniques, and a nuanced understanding 
of risk-return dynamics in constructing resilient investment portfolios. 
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